Estimating time of origin of 2019-nCoV assuming a star phylogeny

Erik Volz e.volz@imperial.ac.uk

January 24, 2020

Following du Plessis & Pybus, we can estimate the TMRCA of a star-phylogeny with heterochronous sampling and given a molecular clock rate: http://virological.org/uploads/short-url/egpzsjtErKV4EiwOrYhy0qhgiX1.pdf

NOTE: There are a lot of assumptions baked into this which also apply to this analysis.

Here I modify this approach slightly by considering the likelihood of each branch of a star phylogeny. This is based on the idea that each branch is an independent realization of a Poisson process with different rates. This is the product of Poisson densities for each branch in the star:

\[
p(G|\omega, s, x_{1:n}, t_{1:n}, t_0) = \prod_{i=1}^{n} \frac{e^{-s\omega(t_i - t_0)}(s\omega(t_i - t_0))^{x_i}}{x_i!}
\]

Where

- \(p(G) \) is the probability density of a genealogy (in this case a star),
- \(\omega \) is the rate of substitutions per site per year,
- \(s \) is the genome length,
- \(x \) is a vector giving the number of SNPs observed in each sample
- \(t \) is the vector of sample times
- and, \(t_0 \) is the time of the root

These are the data obtained from du Plessis & Pybus:

```r
library(lubridate)
```

Following are the dates and associated data:

<table>
<thead>
<tr>
<th>#</th>
<th>date</th>
<th>snps</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2020-01-16</td>
<td>2</td>
<td>2020.041</td>
</tr>
<tr>
<td>2</td>
<td>2020-01-17</td>
<td>0</td>
<td>2020.044</td>
</tr>
<tr>
<td>3</td>
<td>2019-12-30</td>
<td>1</td>
<td>2019.995</td>
</tr>
<tr>
<td>4</td>
<td>2019-12-30</td>
<td>2</td>
<td>2019.995</td>
</tr>
<tr>
<td>5</td>
<td>2019-12-30</td>
<td>2</td>
<td>2019.995</td>
</tr>
<tr>
<td>6</td>
<td>2019-12-30</td>
<td>0</td>
<td>2019.995</td>
</tr>
<tr>
<td>7</td>
<td>2019-12-30</td>
<td>2</td>
<td>2019.995</td>
</tr>
<tr>
<td>8</td>
<td>2020-01-13</td>
<td>0</td>
<td>2020.033</td>
</tr>
<tr>
<td>9</td>
<td>2020-01-08</td>
<td>0</td>
<td>2020.019</td>
</tr>
<tr>
<td>10</td>
<td>2019-12-30</td>
<td>0</td>
<td>2019.995</td>
</tr>
<tr>
<td>11</td>
<td>2019-12-30</td>
<td>2</td>
<td>2019.995</td>
</tr>
</tbody>
</table>
Here, I define two likelihood functions. The first is identical to what was defined by du Plessis & Pybus. The second uses the branch-wise model.

```r
# @param tmrca numeric
# @param rate scalar or vector or rates in units of subst / genome / year
loglik_treelength <- function( tmrca, rate ){
  blen <- d$t - tmrca
  if ( any ( blen < 0 ))
    return ( NA )
  trelen <- sum( blen )
  mean( dpois( sum( d$snps ), lambda = trelen * rate, log = TRUE ) )
}
```

```r
# @param tmrca numeric
# @param rate scalar or vector or rates in units of subst / genome / year
loglik_branch <- function( tmrca, rate ){
  blen <- d$t - tmrca
  if ( any ( blen < 0 ))
    return ( NA )
  mean( sapply( rate, function(r) sum( dpois( d$snps, lambda = r*blen, log = TRUE ) ) ) )
}
```

Here I define some basic parameters for the analysis: genome length, the range of dates to examine, and the range of rates to consider. I will look at two scenarios:

1. Rates in teh range 0.00083-0.00109 subst/ site / year
 - This was used for the main result of du Plessis and Pybus and was based on the earlier study of Dudas
2. A somewhat broader range that encompasses rates seen for other coronaviruses: 0.005-0.001

```r
s <- 29903 # genome length
# substitution rate (per genome)
rates1 <- s * seq( 8.3e-4, 0.00109, length = 1e3 )
rates2 <- s * seq( 5e-4, 0.00109, length = 1e3 )
daterange <- seq( as.Date('2019-12-05'), as.Date('2019-12-24') , by = .001)
xrange <- decimal_date( daterange )
```

This function computes the likelihoods over a range of dates, produces plots, and computes CIs:

```r
plot_densities <- function( rates, ofn = 'ncov2019-starTreeTRMCA.pdf' ){ # likelihoods
  l_tl <- sapply( xrange, function(x) loglik_treelength( x, rates ))
  l_b <- sapply( xrange, function(x) loglik_branch ( x, rates ))
  # convert to density
```
d_tl <- exp(l_tl) / sum(exp(na.omit(l_tl)))

\[d_b \leftarrow \exp(l_b) / \sum(\exp(na.omit(l_b))) \]

compute ci
\[c_i \leftarrow \text{function}(\text{dens})\{
 i \leftarrow c(\max(\text{which}(\text{cumsum(dens)} < 0.025))
 , \min(\text{which}(\text{cumsum(dens)} > 0.975)))
 \text{daterange}[i]
\} \]

\begin{verbatim}
cat('Estimated TMRCA, tree length and branch model:
')
print(c(daterange[which.max(d_tl)], daterange[which.max(d_b)]))
cat('CI for tree length model:
')
print(c(d_tl))
cat('CI for branch model:
')
print(c(d_b))

pdf(ofn)
plot(daterange, d_tl, type = 'l', col = 'black', ylab = 'Density', xlab = '',
 main = 'Black: Tree length likelihood, Red: Branch length likelihood')
abline(v = ci(d_tl), col = 'black', lty =3)
lines(daterange, d_b, type = 'l', col = 'red', lty = 1)
abline(v = ci(d_b), col = 'red', lty =3)
dev.off()
\end{verbatim}

plot_densities(rates1, ofn = 'ncov2019-starTreeTRMCA-rates00083-001.png')
plot_densities(rates2, ofn = 'ncov2019-starTreeTRMCA-rates0005-001.png')

Here are the estimated dates in rate scenario 1:

Estimated TMRCA, tree length and branch model:
[1] "2019-12-22" "2019-12-17"
CI for tree length model:
[1] "2019-12-14" "2019-12-23"
CI for branch model:
[1] "2019-12-11" "2019-12-21"

Here are the estimated dates in rate scenario 2:

Estimated TMRCA, tree length and branch model:
[1] "2019-12-19" "2019-12-15"
CI for tree length model:
[1] "2019-12-11" "2019-12-23"
CI for branch model:
[1] "2019-12-08" "2019-12-20"

Here is the density for rate scenario 1 (black line similar to du Plessis & Pybus Fig 3)
Here is the density for scenario 2: